Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Medicine (Baltimore) ; 103(19): e38116, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728474

RESUMEN

RNA editing, as an epigenetic mechanism, exhibits a strong correlation with the occurrence and development of cancers. Nevertheless, few studies have been conducted to investigate the impact of RNA editing on cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). In order to study the connection between RNA editing and CESC patients' prognoses, we obtained CESC-related information from The Cancer Genome Atlas (TCGA) database and randomly allocated the patients into the training group or testing group. An RNA editing-based risk model for CESC patients was established by Cox regression analysis and least absolute shrinkage and selection operator (LASSO). According to the median score generated by this RNA editing-based risk model, patients were categorized into subgroups with high and low risks. We further constructed the nomogram by risk scores and clinical characteristics and analyzed the impact of RNA editing levels on host gene expression levels and adenosine deaminase acting on RNA. Finally, we also compared the biological functions and pathways of differentially expressed genes (DEGs) between different subgroups by enrichment analysis. In this risk model, we screened out 6 RNA editing sites with significant prognostic value. The constructed nomogram performed well in forecasting patients' prognoses. Furthermore, the level of RNA editing at the prognostic site exhibited a strong correlation with host gene expression. In the high-risk subgroup, we observed multiple biological functions and pathways associated with immune response, cell proliferation, and tumor progression. This study establishes an RNA editing-based risk model that helps forecast patients' prognoses and offers a new understanding of the underlying mechanism of RNA editing in CESC.


Asunto(s)
Nomogramas , Edición de ARN , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/genética , Femenino , Edición de ARN/genética , Pronóstico , Medición de Riesgo/métodos , Persona de Mediana Edad , Carcinoma de Células Escamosas/genética , Adenocarcinoma/genética , Adenosina Desaminasa/genética
2.
J Pharm Anal ; 14(4): 100910, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38655398

RESUMEN

Eclipta prostrata L. has been used in traditional medicine and known for its liver-protective properties for centuries. Wedelolactone (WEL) and demethylwedelolactone (DWEL) are the major coumarins found in E. prostrata L. However, the comprehensive characterization of these two compounds on non-alcoholic fatty liver disease (NAFLD) still remains to be explored. Utilizing a well-established zebrafish model of thioacetamide (TAA)-induced liver injury, the present study sought to investigate the impacts and mechanisms of WEL and DWEL on NAFLD through integrative spatial metabolomics with liver-specific transcriptomics analysis. Our results showed that WEL and DWEL significantly improved liver function and reduced the accumulation of fat in the liver. The biodistributions and metabolism of these two compounds in whole-body zebrafish were successfully mapped, and the discriminatory endogenous metabolites reversely regulated by WEL and DWEL treatments were also characterized. Based on spatial metabolomics and transcriptomics, we identified that steroid biosynthesis and fatty acid metabolism are mainly involved in the hepatoprotective effects of WEL instead of DWEL. Our study unveils the distinct mechanism of WEL and DWEL in ameliorating NAFLD, and presents a "multi-omics" platform of spatial metabolomics and liver-specific transcriptomics to develop highly effective compounds for further improved therapy.

3.
J Pharm Biomed Anal ; 242: 116030, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382318

RESUMEN

Liver's distinctive function renders it highly susceptible to diverse damage sources. Characterizing the metabolic profiles and spatial signatures in different liver injuries is imperative for early diagnosis and etiology-oriented treatment. In this comparative study, we conducted whole-body spatial metabolomics on zebrafish with liver injury induced by ethanol (EtOH), acetaminophen (APAP), and thioacetamide (TAA). The two specific levels, the whole-body and liver-specific metabolic profiles, as well as their regional distributions, were systematically mapped in situ by mass spectrometry imaging, which is distinct from conventional LC-MS and GC-MS methods. We found that liver injury regions exhibited more pronounced metabolic reprogramming than the entire organism, leading to significant alterations in eight fatty acids, three phospholipids, and four low-molecular-weight metabolites. More importantly, fatty acids as well as small molecule metabolites including glutamine, glutamate, taurine and malic acid displayed contrasting changes between alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). In addition, phospholipids, including Lyso PC (16:0) and Lyso PE (18:0), demonstrated notable down-regulation in all damaged liver, whereas PC (34:1) underwent upregulation. This study not only deepens insights into distinct potential biomarkers for liver injuries, but also underscores spatial metabolomics as a powerful tool to elucidate possible pathogenic mechanisms in other metabolic diseases.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Pez Cebra , Animales , Pez Cebra/metabolismo , Hígado/metabolismo , Metabolómica/métodos , Espectrometría de Masas , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácidos Grasos/metabolismo , Fosfolípidos/metabolismo
4.
J Agric Food Chem ; 72(4): 2178-2192, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38259150

RESUMEN

In our previous study, yeast-derived peptide Tyr-Pro-Leu-Pro (YPLP) was found to prolong treadmill time and relieve muscle fatigue in ICR mice. The present study aimed to further investigate the antifatigue mechanism of YPLP. Three doses of YPLP (10, 25, and 50 mg/kg·d) were given to exercise mice for 4 weeks. Results showed that YPLP reduced the oxidative response via the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and promoted energy metabolism through the AMP-activated protein kinase (AMPK) pathway. Label-free proteomics results showed that 81 differential abundance proteins (DAPs) were regulated by high-dose YPLP. These DAPs belonged to proteasome, mitochondrial, and muscle proteins. YPLP was mainly involved in proteasome, aminoacyl-tRNA biosynthesis, focal adhesion, and MAPK signal pathways to enhance muscle endurance. Furthermore, real-time quantitative PCR and Western blotting results proved that YPLP upregulated Psmd14 expression and downregulated p38 MAPK expression. Overall, this study revealed the mechanism behind YPLP to alleviate exercise fatigue.


Asunto(s)
Dipéptidos , Complejo de la Endopetidasa Proteasomal , Proteómica , Animales , Ratones , Complejo de la Endopetidasa Proteasomal/genética , Ratones Endogámicos ICR , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo
5.
Environ Monit Assess ; 196(2): 206, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279061

RESUMEN

Evaluating the ecosystem health of riparian zones is helpful for decision-makers to formulate appropriate management measures. However, there are few methods for such evaluation which account for both the human requirements and ecological aspects of riparian zones. To address this, we created a Pressure-State(Vigor-Organization-Resilience)-Response framework for evaluating the ecosystem health of the riparian zone of the Yangtze River in Jiangsu Province, a region experiencing intense land use changes. Evaluation indicators, including land use change and ecosystem services, were selected. The comprehensive index method was used to calculate the evaluation indicators of ecosystem health, namely pressure, state, and response, and the comprehensive evaluation indicator itself. Using the cold and hot spot analysis, we also analyzed the spatial heterogeneity of ecosystem health in the riparian zone, constructed an ecological management pattern, and proposed corresponding management and protection measures. The results show that (1) from 2010 to 2020, construction land in the study area increased by more than 20%, and all studied land types underwent some degree of conversion to construction land, with cultivated land and water bodies being the main focus of conversion. (2) In 2020, the average ecosystem health in the riparian zone was normal, with a spatial distribution characterized by "high dispersion and low clustering"; and (3) according to the results of the ecosystem health evaluation and cold and hot spot analysis, key areas for stronger ecological protection were identified and, based on this, a number of management recommendations were proposed.


Asunto(s)
Ecosistema , Ríos , Humanos , Monitoreo del Ambiente , China , Conservación de los Recursos Naturales/métodos
6.
PLoS Biol ; 21(11): e3002370, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37943954

RESUMEN

During influenza A virus infection, the viral RNA polymerase transcribes the viral negative-sense segmented RNA genome and replicates it in a two-step process via complementary RNA within viral ribonucleoprotein (vRNP) complexes. While numerous viral and host factors involved in vRNP functions have been identified, dissecting the roles of individual factors remains challenging due to the complex cellular environment in which vRNP activity has been studied. To overcome this challenge, we reconstituted viral transcription and a full cycle of replication in a test tube using vRNPs isolated from virions and recombinant factors essential for these processes. This novel system uncovers the minimal components required for influenza virus replication and also reveals new roles of regulatory factors in viral replication. Moreover, it sheds light on the molecular interplay underlying the temporal regulation of viral transcription and replication. Our highly robust in vitro system enables systematic functional analysis of factors modulating influenza virus vRNP activity and paves the way for imaging key steps of viral transcription and replication.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Orthomyxoviridae , Humanos , Virus de la Influenza A/genética , Gripe Humana/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ribonucleoproteínas/genética , Replicación Viral/fisiología , ARN Viral/genética
7.
Anal Chem ; 95(48): 17622-17628, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37997359

RESUMEN

Short-chain fatty acids (SCFAs), as the main metabolites of gut microbiota, are recognized as crucial players in the host's inflammatory response and metabolic disease. Imaging the spatial distributions and calculating the accurate contents of SCFAs in the heterogeneous intestinal tissue are critical to reveal their biological functions. Here, we develop an isotope-coded on-tissue derivatization method combined with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to map the spatial expressions of SCFAs in the colon tissue based on pair-labeled N,N,N-trimethyl-2-(piperazin-1-yl)ethan-1-aminium iodide (TMPA) and D3-TMPA. A noticeable increase in the MALDI-MSI sensitivity of SCFAs was achieved after on-tissue derivatization, which enables the visualization of acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, hydroxy acetic acid, and hydroxy propionic acid in the colon tissue. Moreover, the introduction of D3-TMPA-tagged SCFAs as internal standards can significantly reduce quantitation deviation from the matrix effects, ensuring the quantitative MALDI-MSI of SCFAs. We further used this method to characterize the spatial alterations of SCFAs in the colon tissues of mice with enterocolitis. The development of this strategy provides a reliable approach to image the spatial expressions of SCFAs in tissues and paves an insight way to study the roles of SCFAs in the gut microbiota and disease.


Asunto(s)
Ácidos Grasos Volátiles , Propionatos , Ratones , Animales , Ácidos Grasos Volátiles/análisis , Ácido Acético , Isótopos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Ácido Butírico
8.
Anal Chem ; 95(41): 15153-15161, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37800909

RESUMEN

The metabolic cross-talk between tumor and immune cells plays key roles in immune cell function and immune checkpoint blockade therapy. However, the characterization of tumor immunometabolism and its spatiotemporal alterations during immune response in a complex tumor microenvironment is challenging. Here, a 3D tumor-immune cell coculture spheroid model was developed to mimic tumor-immune interactions, combined with mass spectrometry imaging-based spatially resolved metabolomics to visualize tumor immunometabolic alterations during immune response. The inhibition of T cells was simulated by coculturing breast tumor spheroids with Jurkat T cells, and the reactivation of T cells can be monitored through diminishing cancer PD-L1 expressions by berberine. This system enables simultaneously screening and imaging discriminatory metabolites that are altered during T cell-mediated antitumor immune response and characterizing the distributions of berberine and its metabolites in tumor spheroids. We discovered that the transport and catabolism of glutamine were significantly reprogrammed during the antitumor immune response at both metabolite and enzyme levels, corresponding to its indispensable roles in energy metabolism and building new biomass. The combination of spatially resolved metabolomics with the 3D tumor-immune cell coculture spheroid visually reveals metabolic interactions between tumor and immune cells and possibly helps decipher the role of immunometabolic alterations in tumor immunotherapy.


Asunto(s)
Berberina , Neoplasias , Humanos , Técnicas de Cocultivo , Neoplasias/patología , Esferoides Celulares/patología , Inmunidad , Microambiente Tumoral
9.
Front Nutr ; 10: 1203063, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662593

RESUMEN

Growing evidence suggests that bone health is programmed in early life. Maternal diet may influence the skeletal development of offspring. We aimed to determine the possible effects of high-fructose intake during pregnancy on different aspects of long bone morphology in the offspring of rats and to initially explore the possible mechanisms. Pregnant Sprague-Dawley rats were randomly divided into four groups and intragastrically administered the same dose of distilled water (CON, n = 12), 20 g/kg/day glucose (GLU, n = 12), 10 g/kg/day fructose (LFRU, n = 12), or 20 g/kg/day fructose (HFRU, n = 12) for 21 days during gestation. Computed tomography was used to analyze the cortical and cancellous bones of the distal femur of the offspring rats, and circulating bone metabolic biomarkers were measured using enzyme immunoassay. The results showed that high-fructose intake during pregnancy could decrease body weight, impair glucose metabolism, and increase serum leptin and uric acid in offspring. The offspring in the HFRU group had higher levels of the N-terminal propeptide of type I procollagen (PINP) and the C-telopeptide of type I collagen (CTX). The bone mean density (BMD), the total cross-sectional area inside the periosteal envelope (Tt.Ar), cortical bone area (Ct.Ar), medullary (or marrow) area (Ma.Ar), and trabecular mean density of the offspring in the HFRU group were lower than those in the CON group. Tartrate-resistant acid phosphatase (Trap) staining showed that high-fructose intake during pregnancy could increase the number of osteoclasts and increase the absorption area. Our results suggested that excessive fructose intake during pregnancy could inhibit skeletal development in offspring. Thus, attention to fructose intake during pregnancy is important for bone development in offspring.

10.
Chem Sci ; 14(36): 9854-9862, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736638

RESUMEN

Two-dimensional (2D) Pd nanosheet-based catalysts have recently garnered widespread attention due to their high atom utilization efficiency. However, their catalytic ability and structural stability still require significant enhancement before they can be widely applied. In this study, we presented the rational design and controllable fabrication of a novel 2D/2D heterojunction, which consists of ultrathin Pd nanosheets (NSs) grown on the Ti3C2Tx MXene surface (Pd NSs/MXene). This heterostructure was achieved through a robust and convenient stereo-assembly strategy. The newly developed Pd NSs/MXene heterojunction not only provides numerous exposed active Pd atoms with an optimized electronic structure but also enables an intimate Pd/MXene interfacial interaction, ensuring a stable hybrid configuration. Consequently, the resulting Pd NSs/MXene heterojunction exhibits exceptional methanol oxidation properties. It possesses a large electrochemically active surface area, high mass and specific activities, and a long operating life, which are significantly superior to those of traditional Pd nanoparticle/carbon and Pd nanosheet/carbon catalysts. Theoretical simulations further reveal strong electronic interactions between the Pd nanosheet and MXene, which dramatically enhance the adsorption energy of the Pd component and simultaneously lower its d-band center. As a result, the Pd NSs/MXene heterojunction is less susceptible to CO poisoning. This work introduces a new 2D/2D heterojunction based on MXene and noble metallic materials and holds significance for the development of other novel heterojunctions, particularly within the realm of 2D material nanoarchitectonics.

11.
Anal Chim Acta ; 1278: 341741, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37709472

RESUMEN

Carbohydrates play crucial regulatory roles in various physiological and pathological processes. However, the low ionization efficiency and the presence of linkage pattern, monosaccharide composition and anomeric configuration isomers make their in-depth analysis very challenging, especially for heterogeneous biological tissues. In this study, we propose a high-sensitive and isomer-specific imaging approach to visualize the spatial distributions of monosaccharide and disaccharide isomers by integrating chemical derivatization and matrix-assisted laser desorption/ionization tandem mass spectrometry imaging (MALDI-MS2I). 2-Pyridinecarbohydrazide (PYD) is developed as a novel derivatization reagent which can not only improves the MS sensitivity of carbohydrates, but also enables the identification and visualization of ketose and aldose monosaccharide isomers, as well as linkage pattern, monosaccharide composition and anomeric configuration disaccharide isomers by mass spectrometry imaging of isomer-specific MS/MS fragment ions. Moreover, we build quantitative MALDI-MS2 and MALDI-MS2I methods for disaccharide isomers based on the diagnostic fragment ions, and good linear relationships could be achieved both in solution and on glass slides. We expect that this study should provide new ideas for in-depth profiling of the spatial signatures of carbohydrates in biological tissues and lay the foundation for a deeper understanding of carbohydrates' structure.


Asunto(s)
Monosacáridos , Espectrometría de Masas en Tándem , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Disacáridos , Aldehídos
12.
J Cell Biol ; 222(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37698931

RESUMEN

Microtubule nucleation is mediated by γ-tubulin ring complexes (γ-TuRCs). In most eukaryotes, a GCP4/5/4/6 "core" complex promotes γ-tubulin small complex (γ-TuSC) association to generate cytosolic γ-TuRCs. Unlike γ-TuSCs, however, this core complex is non-essential in various species and absent from budding yeasts. In Drosophila, Spindle defective-2 (Spd-2) and Centrosomin (Cnn) redundantly recruit γ-tubulin complexes to mitotic centrosomes. Here, we show that Spd-2 recruits γ-TuRCs formed via the GCP4/5/4/6 core, but Cnn can recruit γ-TuSCs directly via its well-conserved CM1 domain, similar to its homologs in budding yeast. When centrosomes fail to recruit γ-tubulin complexes, they still nucleate microtubules via the TOG domain protein Mini-spindles (Msps), but these microtubules have different dynamic properties. Our data, therefore, help explain the dispensability of the GCP4/5/4/6 core and highlight the robustness of centrosomes as microtubule organizing centers. They also suggest that the dynamic properties of microtubules are influenced by how they are nucleated.


Asunto(s)
Centrosoma , Proteínas del Citoesqueleto , Centro Organizador de los Microtúbulos , Microtúbulos , Tubulina (Proteína) , Animales , Citosol , Drosophila , Microtúbulos/genética , Tubulina (Proteína)/genética , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/genética , Proteínas de Homeodominio/genética
13.
Chemosphere ; 341: 140001, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37659510

RESUMEN

The use of rapeseed (Brassica napus) as a hyperaccumulator plant has shown great promise for the remediation of cadmium (Cd) contaminated soils. Nanosized materials (NPs) have been shown to mitigate heavy metal toxicity in plants, but it is unknown how l-aspartate nano-calcium (NPs-Ca) affects Cd uptake, transport, and tolerance in rapeseed. A soil pot experiment was conducted with two treatments: a control treatment (CK) with 2.16 g CaCl2 and NPs-Ca treatment with 6.00 g NPs-Ca, to evaluate the effects and mechanisms of NPs-Ca on Cd tolerance in rapeseed. Compared to CaCl2, NPs-Ca promoted Cd transportation from roots to shoots by up-regulating the expression of Cd transport genes (ABCC12, HMA8, NRAM6, ZIP6, CAX4, PCR2, and HIP6). Therefore, NPs-Ca increased Cd accumulation in rapeseed shoots by 39.4%. Interestingly, NPs-Ca also enhanced Cd tolerance in the shoots, resulting in lower hydrogen peroxide (H2O2) accumulation and proline content, as well as higher antioxidant enzyme activities (POD, CAT). Moreover, NPs-Ca reduced the activity of pectin-degrading enzymes (polygalacturonase: PG, ß-galactosidase: ß-GAL), promoted the activity of pectin methyl esterase (PME), and changed transcription levels of related genes (PME, PMEI, PG, PGIP, and ß-GAL). NPs-Ca treatment also significantly increased the Cd content in cell walls by 59.8%, that is, more Cd was immobilized in cell walls, and less Cd entered organelles in shoots of NPs-Ca treatment due to increased pectin content and degree of pectin demethylation. Overall, NPs-Ca increased Cd accumulation in rapeseed shoots by promoting Cd transport from roots to shoots. And meantime, NPs-Ca enhanced Cd tolerance of shoots by inhibiting pectin degradation, promoting pectin demethylation and increasing Cd fixation in pectin. These findings suggest that NPs-Ca can improve the potential of rapeseed as a hyperaccumulator for the remediation of Cd-contaminated soil and the protection of the environment. Furthermore, the study provides a theoretical basis for the application of NPs-Ca in the phytoremediation of Cd-contaminated soils with hyperaccumulating plants.


Asunto(s)
Brassica napus , Brassica rapa , Contaminantes del Suelo , Brassica napus/genética , Brassica napus/metabolismo , Cadmio/análisis , Pectinas/farmacología , Pectinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Cloruro de Calcio , Antioxidantes/metabolismo , Brassica rapa/metabolismo , Plantas/metabolismo , Suelo , Contaminantes del Suelo/análisis , Raíces de Plantas/metabolismo , Biodegradación Ambiental
14.
J Environ Sci (China) ; 134: 65-76, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37673534

RESUMEN

BiOI/ZnO/rGO (reduced graphene oxide) composite photocatalyst was fabricated using a simple one-step hydrothermal process and applied to the degradation of antibiotic chloramphenicol (CAP). By tuning the Bi/Zn ratios, the structure and photoelectric properties of the catalyst were investigated and characterized in terms of their morphological, structural, optical and photoelectrochemical properties. The as-synthesized composite photocatalysts are well-crystalline, uniform dispersion and exhibit good photocatalytic properties. The photocatalytic degradation rate of CAP by BiOI/ZnO/rGO composite is 8.1 times and 1.8 times that of BiOI and ZnO, respectively. The photocatalytic mechanism studies revealed that the synergistic effect between rGO and BiOI/ZnO can effectively separate photogenerated electron-hole, enhance photocurrents and conductivity, and improve charge carrier densities. Moreover, BiOI/ZnO/rGO possesses good stability and reusability that the degradation efficiency remained above 80% even after 5 recycling. This study reveals that both the introduction of rGO and heterostructure construction between BiOI and ZnO play a crucial role in their photoelectrochemical and photocatalytic properties.


Asunto(s)
Antibacterianos , Óxido de Zinc , Cloranfenicol , Luz
15.
ACS Appl Mater Interfaces ; 15(32): 38781-38794, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37540050

RESUMEN

Activated carbon (AC) is a broad-spectrum adsorbent but is flammable and has low adsorption capacities for polar and/or high-boiling volatile organic compounds (VOCs), while zeolites exhibit high thermal stability but poor adsorption of macromolecular and nonpolar VOCs. In this study, zeolite/AC composites were synthesized with the aim of obtaining broad-spectrum, efficient, and safe adsorbents for VOCs. Dimethyldiallylammonium chloride (DDA)-modified AC was used as a carrier for an in situ hydrothermal reaction enabling assembly with zeolites due to electrostatic attraction. Interface models were constructed for their phases, which revealed the binding force and simulated the binding process. The adsorption and flame resistance of the composites were evaluated. The results showed that DDA effectively modified AC to give it a long-lasting positive charge in solutions. High-silicon and pure-silicon zeolites exhibited low negative charges or were even neutral; it was difficult to combine with the modified AC via electrostatic attractions. Instead, LTA zeolites with high aluminum contents and negative charges were used, and the seed-induction method was used. Ethanol and ultrasonic dispersion were used to prevent agglomeration of the seeds and modified AC powder, so they were self-assembled electrostatically. Moreover, the crystallization time was extended and composites with high zeolite loadings were successfully prepared. According to the model calculation, the binding energy between the zeolite and AC before and after the DDA modification were 324.97 and 1076.46 kcal mol-1, respectively, and the distance between them was shortened by 2.7 Å after DDA treatment. As a result, AC and zeolite combined more closely and exhibited a stronger binding energy. The adsorption capacity for highly polar dichloromethane was improved by zeolite loading on the AC, and the bed penetration time was doubled. However, impregnation with inorganic sodium enhanced the reactivities of the organic components in the composite, and the ignition point was slightly reduced. Furthermore, the electrostatic self-assembly method can expand to prepare the LTA zeolite/columnar AC composite from shaped AC, greatly improving its application prospects.

16.
Discov Nano ; 18(1): 101, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37581715

RESUMEN

Adverse skin reactions caused by ionizing radiation are collectively called radiation dermatitis (RD), and the use of nanomedicine is an attractive approach to this condition. Therefore, we designed and large-scale synthesized fullerenols that showed free radical scavenging ability in vitro. Next, we pretreated X-ray-exposed cells with fullerenols. The results showed that pretreatment with fullerenols significantly scavenged intracellular reactive oxygen species (ROS) produced and enhanced the antioxidant capacity, protecting skin cells from X-ray-induced DNA damage and apoptosis. Moreover, we induced RD in mice by applying 30 Gy of X-ray irradiation, followed by treatment with fullerenols. We found that after treatment, the RD scores dropped, and the histological results systematically demonstrated that topically applied fullerenols could reduce radiation-induced skin epidermal thickening, collagen deposition and skin appendage damage and promote hair regeneration after 35 days. Compared with Trolamine cream, a typical RD drug, fullerenols showed superior radiation protection. Overall, the in vitro and in vivo experiments proved that fullerenols agents against RD.

17.
J Immunol Res ; 2023: 8727884, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36726489

RESUMEN

Background: The exosome is of vital importance throughout the entire progression of cancer. Because of the lack of effective biomarkers in ovarian cancer (OV), we intend to investigate the connection between exosomes and tumor immune microenvironment to verify that exosome-related genes (ERGs) can precisely forecast the prognosis of OV patients. Methods: First, 117 ERGs in The Cancer Genome Atlas (TCGA) dataset were recognized. Afterwards, the risk signature consisting of four ERGs with prognostic significance was built by univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis. We also validated the risk signature by Kaplan-Meier analysis, receiver operating characteristic curve analysis and principal component analysis. Furthermore, gene set enrichment analysis was performed to compare the enrichment patterns between the two risk subgroups. The connections between the exosome-related gene risk score (ERGRS) and clinical features, immune infiltration, immune checkpoint-related genes, copy number variation, and drug sensitivity were explored. We also assessed the function of the ERGRS to forecast immunotherapeutic efficacy by immunophenoscore (IPS). Results: The high-risk group had a worse prognosis than the group with low risk. We verified that the established model possessed a relatively good prognostic value. Pathway enrichment analysis indicated that the genome-wide group with low risk was enriched in immune-related pathways. We discovered that resting dendritic cells and stromal scores were upregulated in patients with high risk in the TCGA and Gene Expression Omnibus (GEO) cohorts. Moreover, the expression of six common immune checkpoint inhibitor targets was assessed, which revealed that the expression levels of CD274 (PD-L1), PDCD1 (PD-1), and IDO1 in patients with high risk were lower than those in patients with low risk. Afterwards, the low-risk group had higher IPS across the four immunotherapies, implying that it had better effects of immunotherapies. Conclusion: Our study demonstrates that the exosome-related gene risk model is closely associated with immune infiltration. It can well forecast the prognosis of OV patients and guide the selection of immunotherapeutic strategies.


Asunto(s)
Exosomas , Neoplasias Ováricas , Humanos , Femenino , Variaciones en el Número de Copia de ADN , Exosomas/genética , Pronóstico , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Factores de Riesgo , Microambiente Tumoral/genética
18.
Food Chem ; 414: 135764, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36842205

RESUMEN

The ultrasound-induced impacts on the peptide characteristics and taste of unsmoked bacon have been evaluated through the use of peptidomics and bioinformatics approaches. Furthermore, the effect of such ultrasound-induced changes on the main endogenous proteases responsible for peptide generation was also investigated. In fact, the activity of main endogenous proteases was significantly increased after ultrasonic treatment during the processing of unsmoked bacon, and contributed to an increased number and an enhanced LFQ intensity of peptides. Besides, such increased amount of peptides and LFQ intensity with up to 500 W ultrasonic treatment were beneficial for the taste improvement of the final products as shown by taste prediction analysis. Nevertheless, an excessive ultrasonic power like 750 W hindered protein hydrolysis and further exerted a negative effect on peptide generation. Therefore, ultrasound under controlled conditions could be considered as a promising way to improve the taste of unsmoked bacon.


Asunto(s)
Carne de Cerdo , Gusto , Biología Computacional , Péptidos , Péptido Hidrolasas
19.
Sci Total Environ ; 865: 161129, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36587683

RESUMEN

Mature landfill leachate (MLL) would be a tough nut to crack, how to realize waste reclamation while deal with the intractable by-products deserves for more considerations. In this study, a novel system, equipped with two biological trickle reactors developed by inert wastes and a connected organic feeder using waste-recycling rotten banana powder, was established for treating MLL. Results indicated that superior pollutant removal performance and long-term stability were achieved by this system, with only COD and TN concentrations slightly higher than the relevant standard limits. But the shortage about poor resistance to shock pollution loads, was underlined by the fluctuation of water quality. Anaerobic condition and carbon source supplementation contributed to more microbial similarities but less community richness and diversity among inert fillings, and the selective enrichment of denitrification and organic-degrading strains simultaneously occurred. The comparisons with common processes demonstrated that this system was a cost-efficient choice for MLL treatment.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Residuos Sólidos/análisis , Contaminantes Químicos del Agua/análisis , Reactores Biológicos , Costos de la Atención en Salud , Carbono , Instalaciones de Eliminación de Residuos , Eliminación de Residuos/métodos
20.
Sensors (Basel) ; 23(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36679644

RESUMEN

In the context of COVID-19, the research on various aspects of the venipuncture robot field has become increasingly hot, but there has been little research on robotic needle insertion angles, primarily performed at a rough angle. This will increase the rate of puncture failure. Furthermore, there is sometimes significant pain due to the patients' differences. This paper investigates the optimal needle entry angle decision for a dorsal hand intravenous injection robot. The dorsal plane of the hand was obtained by a linear structured light scan, which was used as a basis for calculating the needle entry angle. Simulation experiments were also designed to determine the optimal needle entry angle. Firstly, the linear structured optical system was calibrated and optimized, and the error function was constructed and solved iteratively by the optimization method to eliminate measurement error. Besides, the dorsal hand was scanned to obtain the spatial point clouds of the needle entry area, and the least squares method was used to fit it to obtain the dorsal hand plane. Then, the needle entry angle was calculated based on the needle entry area plane. Finally, the changes in the penetration force under different needle entry angles were analyzed to determine the optimal needle insertion angle. According to the experimental results, the average error of the optimized structured light plane position was about 0.1 mm, which meets the needs of the project, and a large angle should be properly selected for needle insertion during the intravenous injection.


Asunto(s)
COVID-19 , Robótica , Humanos , Agujas , Punciones , Dolor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...